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Abstract

When the electron density in a crystal or a quasicrystal
is reconstructed from its Fourier modes, the global
minimum value of the density is sensitively dependent
on the relative phases of the modes. The set of phases
that maximizes the value of the global minimum
corresponds, by positivity of the density, to the density
having the minimum total charge that is consistent with
the measured Fourier amplitudes. Phases that minimize
the total electronic charge (i.e. the average electron
density) have the additional property that the lowest
minima of the electron density become exactly degen-
erate and proliferate within the unit cell. The large
number of degenerate minima have the effect that
density maxima are forced to occupy ever smaller
regions of the unit cell. Thus, by minimization of the
electronic charge, the atomicity of the electron density is
enhanced as well. Charge minimization applied to
simulated crystalline and quasicrystalline diffraction
data successfully reproduces the correct phases starting
from random initial phases.

1. Introduction

The electron density in any material can be decomposed
into its Fourier modes, the amplitudes of which, Aq, can
be measured by X-ray diffraction. If the material is a
crystal or even a quasicrystal, the modes q form a
discrete set ± a reciprocal lattice ± so that a relatively
complete portrait of the density is possible in terms of its
Fourier amplitudes. Unfortunately, to reconstruct the
density, one also needs the relative phases of the Fourier
modes, 'q, which conventional X-ray techniques do not
measure. Efforts to solve this `phase problem' either
employ additional data (heavy-atom substitution,
anomalous scattering, three-beam interference) or rely
on the principle that only very special sets of phases
produce a density that has reasonable physical proper-
ties. The latter approach, known as a `direct method',
was pioneered by Hauptman & Karle (1953) and applies
to the present proposal for solving the phase problem.

Direct methods consider two attributes of the elec-
tron density: positivity and atomicity. Since an arbitrary
density can be made nonnegative by the addition of a
suitable constant, a test of positivity requires an absolute
calibration of the diffracted X-ray intensities in terms of
the average electron density. This additional burden on
the X-ray experiment has favored methods that consider
the atomicity of the electron density. The simplest
expression of this idea, Sayre's (1952) equation, is a
proportionality that exists between the structure factors
of the density, Aq exp�i'q�, and their autocorrelation (in
the reciprocal lattice), whenever the density consists of
well separated identical atoms. If we assume that the
autocorrelation is dominated by its largest term, Sayre's
equation implies approximate relationships between
triplets of phases. Generalizations (e.g. unequal atoms,
quartet combinations etc.) and the use of probability
theory have led to quite sophisticated algorithms that
seek to satisfy relationships among all the phases
consistent with an electron density that is highly
concentrated at a set of points (atoms) (for a review, see
Viterbo, 1992).

A considerably different approach to a direct-method
solution of the phase problem, described below, grew
out of efforts to solve the atomic structure of quasi-
crystals. The quality of some intermetallic quasicrystals,
such as icosahedral AlPdMn, has reached a point where
several hundred symmetry-inequivalent X-ray re¯ec-
tions can be measured (Boudard et al., 1992). Since a
typical icosahedral symmetry orbit has size 120, this
implies a wealth of structural data approaching that of
protein crystals. Two strategies for reconstructing
quasicrystal phases, neither of them direct, have been
used in the past. Qiu & Jaric (1990) used the close
relationship between an AlCuLi icosahedral phase and a
large-unit-cell crystalline `approximant' ± solved by
conventional methods ± to deduce phases for the
quasicrystal. In the case of AlCuFe and AlPdMn
icosahedral phases, where convenient `Rosetta stones'
such as used by Qiu & Jaric were not available, it was
noticed that the intensities of strong re¯ections behaved
in a smooth way with the perpendicular component of
the six-dimensional diffraction vector, q? (Cornier-
Quiquandon et al., 1991; deBoissieu et al., 1994). The
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vanishing of intensities at certain radii in q? space then
gave a simple rule for sign changes in the assumed
centrosymmetric structure factor.

The maximum-entropy method, sometimes portrayed
as a modern descendent of direct methods (Bricogne,
1984, 1988), has also been applied to quasicrystals
(deBoissieu et al., 1991; Steurer et al., 1993). However,
the maximum-entropy method is fundamentally a tech-
nique for modeling the structure (via an arbitrary
density) and as such delivers phase information only
incidentally. While any attempt at modeling a structure,
no matter how crude or specialized, can be viewed as a
direct method in that it makes de®nite predictions about
phases, the maximum-entropy method is suf®ciently
general to merit special attention. It should be added,
however, that, whereas the `entropy' in the maximum-
entropy method has its origin in measurement uncer-
tainty, the phase problem can be addressed even in the
case of perfect data. Certainly, in this paper, it is
assumed that the error in the measured amplitudes Aq is
negligible.

The dif®culty in adapting conventional direct
methods to quasicrystals stems from the very different
nature of the electron density in the `unit cell'. The
example of a one-dimensional quasicrystal (or incom-
mensurately modulated structure) having two funda-
mental periods in its reciprocal lattice already illustrates
this difference. As shown in Fig. 1, the quasiperiodic
one-dimensional density is obtained as a cut through a
periodic density in a two-dimensional space. Atoms, or
point-like concentrations of charge on the cut, become
extended curves in the two- dimensional unit cell. In
general, atomic charge distributions aquire additional
dimensions corresponding to the extra periods in the
reciprocal lattice. In icosahedral quasicrystals, for
example, where the reciprocal lattice has six periods,
atoms are three-dimensional `surfaces'. Although still
`compact' in the sense of having a lower dimensionality
than the unit cell, the charge distributions in quasicrys-
tals are clearly at odds with the logic that led to direct

methods in the ®rst place. For point-like charge distri-
butions (as in crystals), it was argued that a ®nite number
of parameters completely specify the density; an over-
abundance of measured diffraction amplitudes then
leads to an overdetermined set of equations and the
theoretical possibility of deducing phases. In contrast, to
specify just one atomic surface in a quasicrystal, such as
the curve shown in Fig. 1, an in®nite number of
parameters is required.

The more primitive property of positivity makes no
distinction between the kinds of charge distributions in
crystals and quasicrystals. A phase-determination prin-
ciple formulated only in terms of positivity should
therefore apply to crystals and quasicrystals alike. One
such principle, apparently not considered before, might
be called `the principle of minimum charge'. Speci®cally,
of all the electron densities that can be realized by every
possible choice of phases, the unique `atomic' density
corresponds to the phase choice that minimizes the
average electron density consistent with the demands of
positivity. As discussed in greater detail below (x2), the
value of the average electron density is determined by
the requirement that the value of the density at its global
minimum in the unit cell takes the smallest possible
value (zero). An important property of an `atomic'
density, as determined by the principle of minimum
charge, is the fact that the global minimum of the density
is not unique but is highly degenerate. Expressed in
more qualitative terms, the minimum-charge principle
inevitably ®nds phases that generate large expanses of
nearly constant density modulated by tiny ripples.
Whereas the ripples are an artifact of the truncation of
the Fourier series, they play a key role in a reasonably
successful algorithm for ®nding states of minimum
charge (x3). Application of this algorithm to simulated
crystalline and quasicrystalline electron densities in two
dimensions (x4) gives promising results and opens the
possibility that the principle of minimum charge may be
developed into a practical direct method of phase
determination.

2. The principle of minimum charge

In what follows, we make no distinction between crystals
and quasicrystals. The electron density is in both cases
given by the Fourier series

��x� � �0 � 2
P

q

Aq cos�q � xÿ 'q�; �1�

where the terms in the sum involve one representative
from each pair fq;ÿqg of nonzero reciprocal-lattice
vectors; �0 > 0 is the average electron density, Aq the
known (positive) amplitudes and 'q the unknown
phases. The dimensionalities of q and x are equal to the
number of periods of the reciprocal lattice, known as the
rank (Rokhsar et al., 1987). In the case of quasicrystals,
the physical density (in a lower dimension) is obtained

Fig. 1. One-dimensional quasiperiodic density obtained as a cut
through a two-dimensional density having the periodicity of the
square lattice. In®nitely many parameters are in principle required
to specify even one `atomic surface'.
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from �(x) by the construction shown in Fig. 1. To obtain
a ®nite Fourier series, we exclude terms whose ampli-
tudes are less than some multiple � < 1 of the maximum
amplitude. A typical value of �, or `truncation param-
eter', used in our simulations (x4) is 0.1. To emphasize
the ®niteness of our Fourier series, we will sometimes
use the notation q � 1; . . . ;N when the series has N
terms (in some arbitrary order).

Since the average electron density �0 is usually not
known, and in any event measured by completely
different means than the amplitudes Aq, we de®ne a
reduced electron density given by

~��x� � ��x� ÿ �0: �2�
Because the integral of ~��x� over the unit cell vanishes,
the value of ~� at its global minimum, ~��xmin�, is negative.
Given some ~��x�, that is, a particular set of phases, the
minimum value of �0 consistent with positivity of ��xmin�
is

�0 � ÿ ~��xmin�> 0: �3�
Expressed in these terms, the principle of minimum
charge corresponds to ®nding phases that minimize �0

or, equivalently, maximize the global minimum value,
~��xmin�, of the reduced electron density. Henceforth, we
let (3) de®ne the average electron density.

A one-dimensional example serves to illustrate how
the principle of minimum charge selects densities with
atomic characteristics. Shown in Fig. 2(a) is the reduced
electron density computed from the diffraction ampli-
tudes and phases of a unit cell of three atoms having
identical Gaussian charge distributions. The wiggles in
the background are due to the truncation of the Fourier
series. A qualitatively different reduced density, shown

in Fig. 2(b), is obtained when the phases are assigned
random values. While neither of the reduced densities is
positive, the statistical symmetry between positive and
negative values in the case of random phases is clearly
absent when the phases have their correct values. The
connection with the principle of minimum charge is seen
by noticing that a much larger average density, �0, must
be added to the reduced density of Fig. 2(b) to arrive at a
nonnegative total density.

The low value of the global minimum value of ~��x� in
Fig. 2(b) is easily improved upon, while the global
minimum in Fig. 2(a) is in `competition' with several
local minima having only slightly higher values. Fig. 3(a)
gives a magni®ed view of Fig. 2(a), showing the
competition among local minima. Because of truncation,
the correct phases in this example do not realize the
minimum possible value of �0. The true minimum, i.e.
the `optimal' density, was found using the algorithm
described in x3 and has a value of �0 � �opt that is
reduced by 4%; the resulting reduced density is shown in
Fig. 3(b). Although insigni®cant from a physical point of
view, the difference between Figs. 3(a) and 3(b) illus-
trates the basic mathematical property that distinguishes
an optimal density: the global minimum has become
multiply degenerate. This basic fact is seen most directly
by linearizing ~��xmin� with respect to the phases near an
optimal set of phases. Since this forms the basis of our
algorithm for ®nding optimal phases, we defer the
discussion of this point to x3. Here we let this fact be the
inspiration for more sweeping (and unproven) assump-
tions that allow us to relate charge minimization to the
enhancement of atomicity.

Fig. 2. Reduced density reconstructed from (a) the correct phases and
(b) random phases.

Fig. 3. A slight adjustment of the phases in (a), which maximize the
density at the global minimum, produces the density shown in (b),
where the global minimum has become multiply degenerate.
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The following discussion focuses on the distribution
of reduced density values in the unit cell. Given some
reduced density ~��x�, the normalized distribution func-
tion is de®ned by

P��; ~��x�� � R �� ~��x� ÿ �� dx=V; �4�
where �( ) is the Dirac delta function, and dx and V are
respectively the volume element and volume of the unit
cell. An average distribution function is obtained by
averaging the distributions (4) over the subensemble of
reduced densities having a ®xed value of average charge,
�0:

�P��; �0�

�
R

P��; ~��x���� ~��xmin� � �0� d'1=2� . . . d'N=2�R
�� ~��xmin� � �0� d'1=2� . . . d'N=2�

:

�5�
Here we have assumed that the Fourier series (1) is
truncated after N terms so that ~��x� and its minimum
value, ~��xmin�, are functions of N phases. The earlier
remarks about the multiplicity of the global minimum in
an optimal density, together with the results of nu-
merical experiments with charge minimization (x4),
suggest that the average distribution function (5)
approaches the L-shaped form shown in Fig. 4 as �0

tends toward its optimal (minimum) value �opt.
Borrowing the language of Bose±Einstein condensa-

tion,² the distribution of Fig. 4 should be viewed as the
sum of two distributions: a sharply peaked `condensate'
nearÿ�0 and a broad relatively smooth distribution. For
the latter, we will assume a one-parameter scaling form,
the single parameter being simply its ®rst moment, ��. In
detail, our main assumption is the statement

lim
�0!�opt

�P��; �0� � f0���� �0� � �1ÿ f0��1= ���P̂��= ���;

�6�
where P̂ is the (normalized) smooth distribution and f0 is
a number between 0 and 1 representing the relative
weight of the condensate peak. In physical terms, f0

represents the fraction of the unit cell having vanishingly
small electron density. We note that the � function in (6)
will be broadened by truncation effects.

From (6), it is straightforward to make the connection
between charge minimization and atomicity. Since �� is
de®ned to be the ®rst moment of the smooth distribu-
tion, we have R

P̂�y�y dy � 1: �7�
The second moment de®nes a numerical constant �,

R
P̂�y�y2 dy � � > 1; �8�

where the inequality follows from the fact that P̂ has a
®nite variance. Since �P��; �0� is a distribution function
for reduced densities, its ®rst moment vanishes. Conse-
quently,

ÿ�0 f0 � ���1ÿ f0� � 0: �9�
Returning for a moment to the particular distribution
function P��; ~��x��, we note that its second moment is
given directly in terms of the Fourier amplitudes:R

P��; ~��x���2 d� � R ~�2�x� dx=V � 2
P

q

A2
q � I: �10�

Because (10) holds for every member of the sub-
ensemble used in the de®nition of the average distri-
bution function, the same second-moment condition
holds for �P��; �0�. Together with (8), we then obtain

�2
0 f0 � � ��2�1ÿ f0� � I: �11�

Eliminating �� between the ®rst- and second-moment
relations [equations (9) and (11)], we arrive at our ®nal
result:

�2
0

I
� 1ÿ f0

f0�1� �� ÿ 1�f0�
: �12�

Equation (12) expresses �0 as a monotonically
decreasing function of f0 (see Fig. 5). As �0 decreases,
the `noncondensate' fraction of the unit-cell volume,
1ÿ f0, must also decrease, i.e. the electron density
becomes more concentrated or `atomic'. For a reason-
able atomic density ( f0 � 1), the fractional volume
occupied by atoms (or `atomic surfaces' in the case of
quasicrystals) is well approximated by

1ÿ f0 � ���2
0=I�: �13�

One outcome of this analysis is that the dimensionless
expression �0=I1=2 emerges as a very natural ®gure of
merit in phase determination. In addition to having a
very clear interpretation, it has the advantage over other

Fig. 4. Form of the average reduced density distribution function when
the average electron density, �0, is near its minimum (optimal)
value.

² A less exotic example of an L-shaped distribution is the distribution
of elevations over the surface of the earth. The `condensate' peak
occurs at elevation 0 (sea level) and represents nearly 75% of the
distribution.
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commonly used ®gures of merit (Viterbo, 1992) in being
directly proportional to what is being optimized.

We conclude this section with the observation that
there are in®nitely many examples of electron densities
where the method of charge minimization is guaranteed
to fail. A typical example in one dimension is the elec-
tron density of Fig. 2(b). The Fourier waves of this
hypothetical (and exotic) periodic material, when
combined with somewhat different phases, produces the
much more atomic density shown in Fig. 2(a). The
principle of charge minimization always returns an
atomic density, even if the material generating the X-ray
data has very nonatomic characteristics. To bring this
potentiality for `failure' into focus, consider a crystal of
atoms having a freely variable size. As the atomic size
reaches the interatomic scale, and the corresponding
charge distributions begin to overlap, the interstitial
region ± best characterized as having an essentially
constant density value ± shrinks in volume. Since the
minimum-charge principle selects distributions with a
signi®cant interstitial volume (or `condensate' fraction
f0), there comes a point when the atoms in this hypo-
thetical situation are so large that the application of
charge minimization would produce a completely
different, albeit atomic, density. To avoid the possibility
of such `imposters', it is not always necessary, however,
for the X-ray data to extend to atomic scale resolution.
For example, in complex molecular crystals, where
atomic resolution is rarely achieved, there will typically
be large constant-density voids even when individual
atoms cannot be resolved.

3. An algorithm for minimizing charge

Given two sets of phases, the principle of minimum
charge provides a simple criterion for selecting the more
`atomic' of the two: ®nd the global minima of the
corresponding reduced electron densities and pick the
one having the largest value. In general, however,

atomicity is more reliably evaluated by the application
of specialized knowledge so that the primary motivation
for charge minimization is the ease of its implementation
in an automated procedure for phase determination.
Charge minimization even goes to extremes in avoiding
specialized knowledge, in particular, by not making a
distinction between crystalline and quasicrystalline
electron densities.

The global minimum value of a function is just the
minimum of its values at its local minima. This forms the
basis of an iterative search procedure for phases, where
each iteration step is a problem in linear programming.
For any particular set of phases,

'q; q � 1; . . . ;N; �14�
we let

xp; p � 1; . . . ;M �15�
denote the set of local minima of the reduced density
~��x�. This set is ®nite because the Fourier series for ~��x�
is ®nite (N terms). Now if �min is the value of the global
minimum, then

�min � ~��xp�; p � 1; . . . ;M: �16�
Here the phases appear explicitly in the de®nition of
~��x� and implicitly via the positions of the local minima,
xp. In fact, even the number of local minima, M, is a
function of the phases.

By restricting the phases to lie in a small interval
about a set of starting values,

ÿ� � 'q ÿ 'q�0� � �; q � 1; . . . ;N; �17�
we can approximate (16) by a set of linear inequalities
for the phases,

�min � ~��xp�0�� �
PN
q�1

gpq�'q ÿ 'q�0��; p � 1; . . . ;M;

�18�
where xp(0) are the local minima corresponding to the
starting set of phases and gpq is the M � N matrix of
coef®cients

gpq �
@

@'q

~��xp�
��
'q�'q�0� � 2Aq sin�q � xp�0� ÿ 'q�0��:

�19�
Inequalities (17) and (18) represent a linear program-
ming problem for the set of N � 1 variables

f�min; '1; . . . ; 'Ng; �20�
with objective function (to be maximized) given by �min.
Clearly this system always has a `feasible point' so a
solution, denoted by

f�0min; '1�1�; . . . ; 'N�1�g; �21�
always exists. Finally, our phase-determination algor-
ithm consists in iterating the mapping given by

Fig. 5. Relationship between positivity and atomicity as given by
equation (12) (with � � 4=3): as the fractional volume not occupied
by electrons, f0, increases, the average electron density �0 must
decrease.
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f'1�0�; . . . ; 'N�0�g ! f'1�1�; . . . ; 'N�1�g: �22�

If we regard (22) as a discrete dynamical system, then
solutions of the phase problem would appear to be the
corresponding attractive ®xed points. Provided � in (17)
is small enough, the neglect of nonlinear terms in (18) is
a good approximation and the value of �min should
increase with each iteration, approaching some limiting
value at the ®xed point. We recall that the maximization
of �min � ~��xmin� corresponds, by (3), to a minimization
of the average electron density.

Owing to the very different nature of the constraint
equations (17) and (18), however, the situation is not
quite this simple. Numerical experiments (x4) show that
the number of local minima, M, is typically smaller than
the number of variables, N � 1. As a result, the solution
point in the linear programming problem is typically
determined by a signi®cant subset of the 2N constraints
(17) in addition to the M constraints in (18). In other
words, in every iteration, some subset of the phases will
be determined to lie on the boundary of the current
hypercubic domain (17).

To discuss the dynamics of the algorithm, it helps to
have a geometrical picture of the function being maxi-
mized: ~��xmin�, where xmin is the global minimum of ~� in
the unit cell. Since the local minima of ~� are locally
smooth functions of the phases, the condition that some
M local minima are exactly degenerate de®nes a
submanifold of co-dimension M ÿ 1 in the N-dimen-
sional torus of phases. On each such submanifold,
~��xmin� is a smooth function. A useful comparison is
provided by linear programming, where the submani-
folds correspond to the faces of a convex polytope and
the objective function is linear. While this structure
applies locally to the function ~��xmin�, it should not be
overlooked that the true submanifolds are curved and
the objective function is nonlinear. It is for this reason
that the linear programming step of the algorithm must
be iterated.

The dynamical progress of the algorithm toward a
solution depends critically on the value of its single
parameter, �. In the limit of small �, the linear
approximation becomes exact and the linear program-
ming iterates will lie close to submanifolds, where a
certain number of minima (of ~�) are exactly degenerate.
This has the drawback that many iterations are required
to reach a solution and, more seriously, progress toward
a solution may halt if ~��xmin� has a local maximum in the
interior of some submanifold that is not the global
maximum. Numerical experiments described in the next
section show that the latter does indeed occur so that a
small value of � can be used only if the phases are
already known to be near a solution. In Appendix A, we
show that the charge-minimization problem is closely
related to a hard combinatorial optimization problem,
so that the possibility of `false' maxima is hardly
surprising. For phase determination with little or no a

priori information, it is therefore necessary to use values
of � large enough to avoid the problem of false maxima.
Although still deterministic, the behavior of the algor-
ithm in this regime can be characterized as an example
of biased diffusion: the increased strength of nonlin-
earities at large � corresponds to a random force, while
each quasi-random step is clearly biased in favor of
maximizing ~��xmin�. Remarkably, this diffusion process is
empirically quite successful in ®nding true solutions.
Numerical experiments show that a value � � 0:5
(about 30�) is neither too small to run the risk of being
trapped nor too large to invalidate the linear approxi-
mation that forms the basis of the algorithm.

The computationally most intensive step in each
iteration is to ®nd the locations of the local minima of
~�. Since the number of local minima scales as the
number of atoms in the unit cell, while the number of
terms in the expression for ~�, at ®xed resolution, also
scales as the number of atoms, the computational cost
at each iteration scales as the square of the number of
atoms. To estimate the number of iterations needed to
®nd a solution, we distinguish between ab initio phase
determination, where all phases are initially unknown,
and phase re®nement, where a relatively small number
Ns of phases, corresponding to large amplitudes Aq

(`strong re¯ections'), are assumed known. The phases of
the strong re¯ections locate the basin of attraction that
the diffusion process must ®nd in the case of ab initio
phase determination. Assuming the extent of this basin
is roughly � in each of Ns dimensions, the diffusion
process can expect to take some 2Ns steps to ®nd the
basin. Once the basin is found, we expect the bias in the
random walk to be strong and the remaining number of
iterations to be relatively independent of the number of
phases (atoms). In summary, we expect the computa-
tional cost of phase re®nement to scale as the square of
the number of atoms, while for ab initio phase deter-
mination this cost must be multiplied by a factor of order
2Ns , where Ns is the number of strong re¯ections. A
theoretical model of how Ns should scale with the
number of atoms is presently lacking, but an overall
exponential growth in computational cost with the
number of atoms seems appropriate, given the close
relationship to the knapsack optimization problem (see
Appendix A).

4. Examples of phase determination in two dimensions

Motivated by the ease of visualizing electron densities
in two dimensions, we decided to perform phase
determination on simulated crystalline (point-like) and
quasicrystalline (curvilinear) densities in two dimen-
sions. Since our main interest was the behavior of the
charge-minimization algorithm in simple situations,
there was no effort to optimize the implementation of
the algorithm. The results presented here were
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obtained on a 120 MHz Macintosh running an
approximately 30 line program written in the Mathe-
matica language.

Features common to all of our simulations are a
square Bravais lattice with unit lattice parameter, a total
electronic charge normalized to unity, and a truncation
parameter � � 0:1: All examples, even the centrosym-
metric ones, were treated without regard to point-group
symmetry. The solutions therefore form two families:
translates of the true density and translates of the
inverted true density. To evaluate the progress of the
phase determination, we therefore computed two
overlap functions:

Q� � max
y

R
~��x� ~��T�x� y� dxR

~�2�x� dx

� �
� max

y

P
q A2

q cos�q � y� 'q � 'T
q �P

q A2
q

( )
; �23�

where ~��T are the true densities given by the two
inversion-related sets of true phases, 'T

q . A solution thus
corresponds to either Q� or Qÿ having the value unity
(or both, in the case of centrosymmetry).

Crystalline electron densities were, for simplicity,
taken to be randomly placed identical atoms with

Fig. 6. Evolution of the density in a crystal with 10 equal atoms per unit cell. Frames (b)±(d) show the results of respectively 100, 200 and 360
iterations of the charge-minimization algorithm applied to the initial random state (a).
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Gaussian form factors. Explicitly, the structure factors
are

Aq exp�i'q� � �1=N�PN
k�1

exp�iq � xk�
� �

exp�ÿBq � q�;
�24�

where x1; x2; . . . are the randomly chosen positions.
Since the dimensions of the unit cell are ®xed, we set
B � 0:3=N to ensure that the atomic size scales correctly
with the mean atomic separation. To further improve the
atomicity of the density, we removed atoms if their
separation from another atom was less than 0:6=N1=2.

Fig. 6 shows an example of ab initio phase determi-
nation for 10 atoms, a situation where � � 0:1 gives a
Fourier series of 92 terms. The ®rst frame, Fig. 6(a),
shows the initial density corresponding to random
values assigned to all 92 phases. Subsequent frames
show the evolution of the density after 100, 200 and 360
iterations of the charge-minimization algorithm of x3.
The variation of the overlaps Q� are shown in Fig. 7.
During the ®rst 200 iterations, the maximum phase-
angle change per iteration was set at � � 0:5. Even after
just a few iterations, the density becomes concentrated
at points, initially few in number. During the course
of the minimization, atoms appear and disappear
throughout the unit cell. After 100 iterations (Fig. 6b),
for example, we note that some of the well established
charge concentrations correspond to correct atomic
positions (Fig. 6d), while others are clearly imposters. As
the number of correct positions grows, we reach a point
after 200 iterations (Fig. 6c) where the value of Qÿ is
close to unity and a solution has been found. To identify
this point in the minimization without the bene®t of
knowing the true phases (and hence Q�) is not dif®cult:
the subsequent evolution of the electron density only
exhibits small ¯uctuations in the atomic positions and an
overall drift in the origin. Fluctuations are reduced and
the phases determined to higher accuracy by decreasing
the parameter �. In the example shown, � was reduced

to 0.2 at iteration 200, and then further to 0.1 at iteration
300. The ®nal density (Fig. 6d), at iteration 360, shows
essentially the same atomic structure found with
� � 0:5 (Fig. 6c) but with more circular atoms and a
¯atter background.

The bias in the diffusive dynamics of the phases
originates from data computed at the local minima of
the reduced density [equation (18)]. A simple measure
of the strength of the bias is simply to compare M with
the number of unknown phases, or N � 92 in the
present example. Following the behavior observed in all
other experiments, M increased with decreasing � but
was always smaller than N, even for � � 0:1, where M
was typically 50. This means that some fraction of the

Fig. 7. Corresponding evolution of the two overlaps, Q�, for the
charge-minimization example of Fig. 6.

Fig. 8. Two ®nal states of charge minimization when the parameter � is
too small. Densites (a) and (b) are the result of 100 iterations on the
same 10 atom system shown in Fig. 6, starting with different random
initial phases.
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phases makes steps of size exactly � with every itera-
tion. When the true density has been found, however,
such phases will tend to make compensating steps of��
and ÿ� in successive iterations.

If the initial value of � is too small, the algorithm
invariably gets trapped in a metastable state. If one
starts from the same random assignment of phases as in
Fig. 6(a), the result of 100 iterations with � � 0:1 is
shown in Fig. 8(a). Although this density persists with
further iterations, it can easily be distinguished from the
correct density, Fig. 6(c), which persists at � � 0:5. The
simplest procedure is to check for reproducibility (up
to translation and inversion) of the ®nal density for
different random initial phases. A repeat of the previous
experiment, for example, results in the completely
different density shown in Fig. 8(b). Also, given a set of
candidate densities, say Figs. 6(d), 8(a) and 8(b), one can
compare their global minimum values since that is,
after all, what these densities are trying to maximize.
For the three examples cited, these are, respectively,
~��xmin� � ÿ1:72, ÿ2.38 and ÿ2.41 and show that Fig.
6(d) is clearly more `atomic' than either 8(a) or 8(b). The
density values at the local minima form strongly peaked
distributions. The mean values of the distributions
corresponding to Figs. 6(d), 8(a) and 8(b) are ÿ1.38,
ÿ2.03 and ÿ1.83 and provide a somewhat more mean-
ingful comparison than the least element in each
distribution. The distributions of all the density values in
the unit cell are compared in Fig. 9. We note that the
true density (corresponding to Fig. 6d) comes closest to
the L-shaped distribution introduced in x2 (Fig. 4).

As a simple example of a quasicrystalline density, we
chose the continuous atomic surface with centrosym-
metric modulation shown in Fig. 10(a). The structure
factor has the form

Aq exp�i'q� � Jm�n�
�mÿ n�� exp�ÿB�mÿ n�2�; �25�

where q � 2��m; n�, J is the Bessel function, 
 controls
the amplitude of the modulation and B the thickness of
the atomic surface. In the example shown, 
 � 0:5 and

B � 0:01; the resulting truncated Fourier series had 44
terms.

As with the crystalline example, the initial phases
were given random values and � was set to the value 0.5.
The density evolution is portrayed in Figs. 10(b)±(d) and
shows a rapid convergence to a translate of the true
density. A plot of the overlap function Q� (Qÿ being
identical) is shown in Fig. 11. The ®nal density proved to
be quite stable; upon further minimization (not shown),
the curvilinear density never showed a tendency to
break up into point-like atoms, for example.

To investigate the performance of the charge-mini-
mizing algorithm in phase re®nement, a random system
of 20 atoms (178 Fourier waves) was studied with two
kinds of initial conditions. In the case of `uniform
randomization', a random phase error uniformly
distributed within ��� �0<�< 1� was added to all the
true phases. The other case, `selective randomization',
was similar but used � � 0:5 on only the Ns largest
amplitude waves and completely randomized the rest
(� � 1). The criterion for evaluating success was also
different from that used in the ab initio experiments. A
re®nement can be considered successful only if Q� is
large, and then only if the corresponding translation [y
in (23)] is small. To evaluate performance, we therefore
found the `steepest ascent' maximum of Q�, beginning
at y � 0. Successful and failed phase re®nements had
quite distinct behaviors in Q� with iteration count,
supporting the basin of attraction mechanism. In a
successful re®nement, Q� rises more or less mono-
tonically, while in the failures Q� behaved randomly and
only rarely exceeded 0.6.

In the case of uniform randomization, the success rate
makes a rapid transition in a small range of � near
� � 0:65. Of ten trials performed at � � 0:6, all but two
yielded successes, while only three out of ten trials at
� � 0:7 gave a successful re®nement. With selective
randomization, where we vary the number Ns, the
transition is not quite as abrupt: the success rate for ten
trials was 100% at Ns � 90, 60% at Ns � 70, and 40% at
Ns � 50. These two experiments give complementary
information about the size of the attractive basin: its
angular range (�0.65�) and the extent of its domination
by strong re¯ections (about 60 out of 178).

5. Conclusions

The principle of minimum charge exploits the fact that
in an atomic density the lowest density values ± those
near zero ± are also by far the most common. This lowest
density value percolates throughout the unit cell as a
distinctive `condensate' that only the correct phase
assignment can reproduce. A simple algorithm for
®nding this singular state proceeds by modifying the
phases, iteratively, so as to raise the lowest minimum in
the reduced density [ ~��xmin�]. The inevitable outcome of
this procedure is a set of local minima that are all nearly

Fig. 9. Density distributions in the unit cell corresponding to (in order
of decreasing peak height) Fig. 6(d), Fig. 8(b) and Fig. 8(a).
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degenerate and collectively represent the sought for
condensate. As an optimization problem, the quantity
being minimized is the minimum average electron
density (�0) consistent with the requirement of positivity
[�0 � ~��xmin� � 0]. Appropriately normalized ��0=I1=2�,
this same quantity provides a useful ®gure of merit in
phase determination.

Because of its `minimal' assumptions about the true
nature of atomic densities, the principle of minimum
charge is applicable to quasicrystals as well as ordinary
crystals. The results of simple experiments with simu-
lated diffraction data, documented here, are suf®ciently
encouraging to consider tests involving real data.
Currently under way is a project to determine the
structure of the quasicrystalline AlPdMn icosahedral
phase.

APPENDIX A
Charge minimization and the knapsack problem

Here we show that a special case of a generalization
of the charge-minimization problem is equivalent to
the `knapsack problem' of combinatorial optimization
(Nemhauser & Wolsey, 1988).

We consider the case of centrosymmetric densities
when by proper choice of origin the reduced density
takes the form

~��x� � 2
PN
q�1

Aqsq cos�q � x�; �26�

where sq is now simply a sign. To completely discretize
the charge-minimization problem, each Fourier mode is
evaluated on the lattice generated by fa=m; b=m; . . .g,

Fig. 10. Example of phase reconstruction for a curvilinear electron density as in a quasicrystalline atomic surface. Frame (a) shows the true density
while (b)±(d) are the results of respectively 10, 40 and 80 iterations of the charge-minimization algorithm.
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where fa; b; . . .g are the generators of the crystal's
Bravais lattice and m is an integer. We let xp, with
p � 1; . . . ;M, be any one of the M � mD inequivalent
points in the D-dimensional unit cell, and de®ne an
M � N matrix by

Cpq � 2Aq cos�q � xp�: �27�
We note that, for suf®ciently large M, the columns of C
are orthogonal and individually have zero sum (corre-
sponding to orthogonality with the absent q � 0
column). A discretized version of the centrosymmetric
charge-minimization problem may now be stated in the
following language: Find the set of signs fs1; . . . ; sNg
such that the column vector

~�p �
PN
q�1

Cpqsq �28�

has the largest possible minimum element. If one
chooses a suitably large m (so M � mD is of order N or
greater), the discretized version can be an arbitrarily
good approximation of the original problem.

As a generalization of the above problem, we relax
the orthogonality constraint on the columns while
maintaining the vanishing of their sums. If there is any
hope of an ef®cient algorithm to solve the charge-
minimization problem, it is conferred by the orthogon-
ality property which we sacri®ce in what follows. Indeed,
if we now specialize to the case of matrices C with only
two rows, we obtain the knapsack problem ± a standard
`hard' problem in combinatorial optimization.

Since the column sums are zero, for the case of two
rows we have

C1q � ÿC2q � cq �29�
and by rede®ning the signs sq we can assume without
loss of generality that cq > 0 for all q. We then have

~�1 �
PN
q�1

cqsq � ÿ ~�2: �30�

Again, without loss of generality, we may assume ~�1 � 0
since we are free to reverse all the signs. Our optimi-
zation problem is now that of ®nding signs that maxi-
mize the non-positive sum (30). In terms of the variables
�q � �1� sq�=2 which take on the values 0 or 1, (30)
becomes

~�1 �
PN
q�1

�2cq��q ÿ
PN
q�1

cq � 0: �31�

This shows the equivalence with the problem of ®nding
the optimal subset of the positive real numbers 2cq that
gives the maximal ®lling of a `knapsack' having a
prescribed size (given as the sum of the cq).

I thank Daniel Sleator for suggestions regarding an
early version of the minimum-charge algorithm and
Chris Henley for his detailed editorial remarks.
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